Modelling Off-axis Performance of a Loudspeaker System

The process described below is intended to mimic real-live process of evaluating polar performance of
a loudspeaker system. It may start with creating driver files with properly conducted driver measurements.
When finished, the full on-axis and off-axis polar characteristics would be available. It is therefore anticipated,
that driver’s location on the front baffle is already determined (as it would be in real-life), and the placement of
the test microphone is also determined, and it would be typically on-axis of the tweeter driver, at 1meter
distance. Real-life “spinorama” would move the microphone between -90deg...... +90deg front angle and record
SPL curves at 5deg intervals. The recorded SPL curves may be required to be of the minimum-phase type, and
this would require some extensive post processing activities. In other words — it’s a big job.

The purpose of this short paper is to present the process of modelling a complete set of on-axis and off-
axis performance curves of an example two-way system, using woofer and tweeter drivers. The process includes
creating woofer and tweeter driver files by using Amplitude Modeller functions. Typically, this would require a
quick examination of manufacturer-supplied SPL curve, and re-creating the main SPL features in the Amplitude
Modeller. The process is relatively quick, as the all-important driver’s transfer function is created automatically
while you create the first-cut SPL curve. There is no need to re-create small wiggles of the SPL curve, because
they do not affect crossover design. There is no need to engage enclosure modelling either, because sealed
enclosure would be approximated as +12dB/oct, high-pass filter, and vented enclosure would be approximated
as +24dB/oct high-pass filter. Besides, this process should only serve the purpose of enabling you to make
purchasing decision — if the modelling has revealed, that the final performance specification can be met.
Spending 20-30 minutes on each driver should be quite sufficient to create reasonable representation of the
manufacturer supplied SPL curves. When you are satisfied, that the whole model is working for you, the next
step is to purchase the drivers and start serious measurements on the final enclosure.

Modelling process described here re-creates exactly that situation. Here are some basic design
parameters to start with:

Enclosure front baffle dimensions are width X = 30 cm and height Y = 60cm.

Woofer is mounted at X = 15¢cm and Y = 15cm baffle location.

Tweeter is mounted at X = 15cm and Y = 45¢m baffle location.

Test microphone is located at the tweeter axis, at 1m distance.

Driver’s impedance is irrelevant to the subject of this paper, and will be assumed to be 8ohm.
Obviously, in real-life, you would measure the impedance and include it in the design activities.
Woofer diameter is about 25cm.

Tweeter diameter is about 5cm.

8. In order for the SPL curves to be useful for design purposes, they must mimic real-live, anechoic
measurements.
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Loudspeaker system described above under free-field testing at 1W/1m conditions.



We are now in the position to create driver files. Since the drivers will be mounted in a box, modelling
front baffle diffraction is as good starting point as any.

Woofer driver file

Diffraction modeller has been adjusted to reflect the exact design specifications for baffle size, driver
and microphone locations — see below. Other settings also as per picture below.
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The diffraction curve created above will be combined with woofer’s free-field (anechoic, or 4PI) SPL
performance created in the Amplitude Modeller and shown below. It is observable, that in order to focus on the
issue at hand, woofer frequency response is as simple as possible. Woofer anechoic efficiency is 90dB.
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When the woofer diffraction curve is incorporated, we arrive at the following SPL curve. This is the final

woofer SPL response.
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As a matter of exercise, you may run HBT on the modelled curve. This would confirm, that the
artificially created woofer’s transfer function is indeed of minimum-phase type. Save the woofer file.
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Tweeter driver file

The same as for woofer, the tweeter driver’s SPL anechoic response has been design to be as simple as

possible, and is shown below.
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Again, for simplicity, tweeter SPL curve developed in Amplitude Modeller will be combined with
tweeter’s diffraction curve. We anticipate, that once combined, the tweeter 2PI efficiency will be 96dB (just for
example). As a consequence, the Amplitude Modeller SPL must be levelled at 90dB — as shown on the picture
above. Diffraction modeller for the tweeter has been adjusted to reflect the exact design specifications for baffle
size, driver and microphone locations — see below. Other settings also as per picture below.
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It is observable, that tweeter diffraction curve is way different from woofer diffraction curve. When the
tweeter diffraction curve is incorporated, we arrive at the following SPL curve. This is the final tweeter SPL
response. Save the tweeter file.
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As a matter of exercise, you may run HBT on the modelled curve. This would confirm, that indeed, the
artificially created tweeter’s transfer function is indeed of minimum-phase type.
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HBT parameters for the tweeter.

Crossover Design

Given the efficiency differences and diffraction issues for each driver, crossover must be able to
compensate for those two issues, and deliver flat frequency response within 30Hz-20000Hz. Both: woofer filter
and tweeter filer must incorporate additional elements to facilitate flat frequency response as measured in
anechoic chamber. We’ll start with woofer branch.
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In order to secure flat frequency response of the woofer branch, it was necessary to modify low-pass filter initial
values and add simple LR network with values as shown above. Pink curve is the final woofer response.
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In order to secure flat frequency response of the tweeter branch, it was necessary to modify low-pass filter initial
values and add simple L-Pad attenuating network with values as shown above. Pink curve is the final tweeter
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Frequency response of the complete system is shown above. It is clear, that anechoic efficiency of this system is
90dB for 1W/1m conditions. It is possible to spent more time optimizing crossover performance (like make
L5=1.5mH), and this would result in flatter SPL curve. But the goal of this exercise is to illuminate the basics of
the off-axis system modelling, therefore the above performance is deemed adequate for the purpose.




System Front Panel layout

So far, we have created driver files with minimum-phase, anechoic chamber (4P1) frequency responses.
Each driver has it’s individual diffraction characteristics embedded into the respective SPL curve. A simple
crossover with compensation circuits has been designed as well, and the system frequency response deemed
satisfactory. We can now move to the mechanics of the complete system simulations on the Front Panel baffle

screen.

simulations, which in our case is: X = 15cm, Y = 45cm.

100cm.

All the above requirements are the same as if you did actually measure the loudspeaker in real-life.

Adjust locations of woofer and tweeter on the front baffle, as per diffraction simulations earlier.
Align the microphone pivot location to the same as the mike location during the diffraction

Adjust microphone initial angular location to Horizontal = Odeg, Vertical = Odeg, and distance =
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When you press “ Configure System” button, you will be able to re-plot curves shown in the CAD section. As
shown below. Please note “Measured SPL + FIt” plotting option.
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Everything looks good so far, so we can start automated “Spinorama” process. Select “Off-Axis
SPL+Diff+FIt” plotting option and press “Generate H-Polar Plots” button. This will start graphical polar
simulation process, where the microphone is moved around it’s selected pivot point from -90deg ...... +90deg.
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When finished, the Polar Plots screen is opened automatically and the display will look as follows:
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CSD View of the polar performance — Standard option
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CSD View of the polar performance — Normalized option
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XY Coordinates View of the polar performance — Standard option
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XY Coordinates View of the polar performance — Normalized option
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Circular Coordinates View of the polar performance — Standard option
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Circular Coordinates View of the polar performance — Normalized option
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It may be interesting to align the frequency scales of On-axis SPL curve with the Polar Plots graphics. It is now
possible to correlate irregularities of the on-axis SPL curve with it’s corresponding polar effects.
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Conclusion

Process described in Part | of the diffraction modelling in SoundEasy paper, required diffraction to be
removed from the measured (modelled) SPL curve prior modelling. This is no longer necessary.

A fully automated process for generating on-axis and off-axis performance curves and plots has been
elaborated above. We started with virtually nothing — and then step-by-step created driver files with SPL data
mimicking real-life anechoic chamber measured SPL curves. Taking into account SPL differences and
diffraction differences for differently mounted drivers, we designed a simple crossover with a couple of
compensation circuits to achieve reasonably flat on-axis, anechoic frequency response from 30Hz to 20000Hz.
In the final step a fully automated process generated complete set of performance curves over the front 180deg
set of angles. These curves were then used to display collected data in the variety of three distinct polar patterns.
The polar graphics are produced without any unnecessary fuzziness and are displayed with clearly defined
decibel range scale.

Thank you for reading
Bohdan



